等差数列公式小学

算术级数公式:

等差数列的前n项求和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

等差数列{an}的一般公式为:an = a1+(n-1) d。

等差数列是常见的一种。如果一个数列的每一项与其前一项之差等于来自第二项的同一个常数,则该数列称为等差数列,其差和容差通常用字母d表示。

比如:1,3。

通式的推导:

a2-a 1 = d;a3-a2 = d;A4-A3 = d...an-an-1 = d,分别将左右表达式相加。

得到an-a 1 =(n-1)* d→an = a 1+(n-1)* d。

前n项及公式为:sn = a 1 * n+[n *(n-1)* d]/2。

Sn=[n*(a1+an)]/2

Sn=d/2*n?+(a1-d/2)*n

注:以上n均为正整数。