计算线段和角度的定律
计算线段和角度的规则如下:
最长的线段上有多少个点(包括端点),然后从1开始向下加。比如有6个点,那么线段总数就是5+4+3+2+1 = 15;有10个点,所以线段总数为9+8+7+6+5+4+3+2+1=45。
计算时,可以将这些数再反过来相加,于是得到:当有6个点时,总条数为6×5÷2 = 15;当有10个点时,总答案为:10×9÷2=45。计算角度的规律和上面的规律一模一样:按照上面的方法计算射线数。
线段是指直线上两点之间的有限部分(包括两个端点),不同于直线和射线。
相关知识:
线段,技术制图中的通用术语,指由一个或多个不同的线元素组成的连续或不连续的绘图线,如由“长划、短间隔、点、短间隔、点、短间隔”组成的实线段或两点长线段。
用尺子把两点连起来,你就得到一条线段。线段的长度是这两点之间的距离。连接两点的线段的长度称为这两点之间的距离。
线段由字母A、B或代表其两个端点的小写字母表示。有时这些字母也代表线段的长度,记为线段AB或线段BA,线段A..其中a和b代表线段的两个端点。
形成理论:
一般来说,一条线段是由无数个点组成的,这也是教科书上常说的话。我们认为这种说法是正确的。其实这个问题已经有很多个人研究过了。
经过各界人士的审议和辩论,提出了以下问题:如果一条线段是由点组成的,那么它是有限的还是无限的?如果是有限数,这些点有长度吗?如果是无限的,这几个点之间有差距吗?
如果点与点之间没有空间,那么点就不能说有长度,即都是孤立的,线段的长度就得不到;如果点与点之间有间隙,可以在两个隔开的点之间插入另一个点吗?如果有间隙,它们之间可以插入多少个点?